Contract Research Services

Our Mission

Founded by CLARITY (Nature, 2013), SWITCH (Cell, 2015), and SHIELD (Nature Biotechnology, 2019) inventors from MIT and located in Cambridge, MA, LifeCanvas Technologies develops and offers as services a full suite of research tools for tissue clearing, labeling, and volumetric imaging of intact organs such as the brain. We are excited to show the biomedical research community the power of our whole-sample analysis methods, which provide greater value and richer information content versus traditional thin-section techniques, all at a competitive price.

Our Services

We offer a Full-Service package that replaces embedding, destructive sectioning, staining, and serial imaging of thin tissue slices with a streamlined approach using intact organ samples that offers greater flexibility and requires less hands-on time. With the LifeCanvas pipeline of proprietary technologies, take advantage of whole-sample methods to:

1. Reduce processing work and view samples in multiple anatomical planes

2. Localize regions of interest more confidently by visualizing organ-sized datasets that provide greater context

3. Acquire data on all sample regions in parallel, facilitating analyses that are more quantitatively robust to be performed

4. Explore fertile ground where novel and unexpected discoveries can take place

To learn more about the advantages of whole-sample analysis, please read our blog post “Why use intact samples for your research?”

We are now happy to offer prospective customers the opportunity to evaluate our services with a sample of their own, FREE of charge*.

*Free offer limited to certain services and applications, as follows:

As part of an initial consultation, for each lab/PI we will process 1 sample (e.g., mouse brain hemisphere) free of charge, including performing SHIELD tissue preservation, SmartClear II Pro optical clearing, and SmartSPIM light-sheet imaging of up to two endogenous fluorescence channels.

If part of your request, after optical clearing we can also perform SmartLabel whole-sample rapid immunostaining. We are happy to offer this on a complimentary basis as well, if the following conditions are met:

(1) Your choice of antibody/stain is one that we have previously validated as compatible with our approaches. Some examples include specific antibodies to: Parvalbumin (PV), Glial fibrillary acidic protein (GFAP), Neuropeptide Y (NPY), Tryptophan hydroxylase 2 (TPH2), Tyrosine hydroxylase (TH), Myelin basic protein (MBP), histone H3, and GFP, as well as various fluorescent nuclear dyes such as SYTO 16 (488-excited) and TO-PRO-3 (642-excited).

(2) You provide us with ample antibody/stain to label your sample.

Learn More About Our Approaches

Delipidating tissue to enable intact-sample labeling and imaging involves exposing samples to harsh treatments like high temperatures and pH changes. If left unchecked, this can cause damage to proteins and overall tissue structure, leading to incomplete or inaccurate image datasets. Therefore, to preserve the sample’s endogenous fluorescence and antigenicity along with tissue architecture, we use a novel tissue preservation technique called SHIELD that forms intramolecular bonds using polyfunctional, flexible epoxides to stabilize tissue architecture.

After SHIELD preservation, the tissue can be delipidated and either refractive index (RI)-matched for imaging or subjected to active immunohistochemical labeling. Notably, SHIELD-preserved tissues are well-suited for antibody multiplexing, i.e., iterative staining and de-staining, without loss of tissue antigenicity, to build up a rich picture of protein expression over repeated rounds of imaging.

Request a quote

Clearing progression whole mouse brainsEliminating membrane lipids is crucial to enabling better light penetration for imaging and increasing tissue permeability for active transport of molecular probes deep into intact tissue. Our active clearing device, SmartClear II Pro, employs a patent-pending stochastic electrotransport mechanism to foster rapid delivery of exogenous molecules such as the detergent SDS into tissues, facilitating uniform removal of light-scattering membrane lipids. Thanks to the application of a rotational electric field which minimizes the displacement of structural biomolecules, the tissue is cleared without any damage or deformation.

Request a quote

PV staining in rat coronal sliceAttempting to passively immunolabel samples that are a few millimeters to one centimeter thick usually takes many weeks and very high concentrations of expensive antibodies, without any guarantee that staining will extend to the sample’s innermost structures.

Our SmartLabel device combines two technologies – stochastic electrotransport and SWITCH – and allows us to achieve whole-organ antibody staining that is uniform from surface to core. While stochastic electrotransport provides for efficient distribution of antibodies into the organ, SWITCH controls reaction kinetics to ensure that antibody binding isn’t activated until reagent concentration has been homogenized throughout the sample. The result is strikingly uniform labeling that enables you to visualize proteins deep within the organ and study the fine-scale topography of the cells they identify.

Request a quote

Before and after RI matchingAfter clearing and optional labeling, translucent, delipidated samples are incubated in EasyIndex, our refractive index (RI)-matching solution, raising and homogenizing their RI and turning them fully transparent. This increases light penetration into the sample and ensures that images will exhibit the highest resolution and focus. The cleared and labeled samples are then embedded in an agarose gel to stabilize them while imaging, ensuring alignment across channels and aiding colocalization of signals.

Request a quote

Acquiring high resolution, three-dimensional volumetric image data of whole organs using confocal or two-photon microscopy is a time-consuming and expensive process, as these slow line-scanning techniques are best suited to small, localized regions of interest. Light-sheet microscopy overcomes this speed limitation by selectively illuminating distinct focal planes sequentially from the sides of the tissue sample to achieve optical sectioning. LifeCanvas’s own light-sheet microscope, SmartSPIM, offers superior imaging speed and uniform axial resolution across the entire sample, generating datasets with pixels sized 1.8 µm/px in XY and with 4 µm Z-steps (3.6x, 0.2 NA objective; ~4.5 µm tall PSF). With rapid 4-color acquisition (488, 561, 642, & 785 laser lines) of your embedded samples, we can precisely overlay multiplexed immunofluorescence signals and fluorescent protein expression patterns alike.

Request a quote