About the Technology

CLARITY enables the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using a mouse brain, intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters are shown.

Clearing Process

SWITCH introduces a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. The technology uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction. The framework permits multiple rounds (>20) of relabeling while synchronizing labeling reactions to improve probe penetration depth and uniformity of staining.

SWITCH introduces a simple method that enables proteomic imaging for scalable, integrated, high-dimensional phenotyping of both animal tissues and human clinical samples. The technology uniformly secures tissue architecture, native biomolecules, and antigenicity across an entire system by synchronizing the tissue preservation reaction. The framework permits multiple rounds (>20) of relabeling while synchronizing labeling reactions to improve probe penetration depth and uniformity of staining.

Magnified Analysis of Proteome (MAP) linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. The expanded tissue tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. Off-the-shelf antibodies can be used for multiple rounds of immunolabeling and imaging of a tissue’s magnified proteome.